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Abstract 

The notion "strictly detailed balanced subnetwork" is introduced, for chemical reaction 
networks which are open and spatially homogeneous, to refer to any set of reactions the 
net rates of which vanish in each asymptotically stable steady state, regardless of the 
kinetic parameters of any reaction in the whole network. Necessary and sufficient condi- 
tions for sets of reactions to be strictly detailed balanced subnetworks are derived. An 
algorithm for detecting all reactions belonging to such subnetworks in systems of arbitrary 
stoichiometry is given, justified and applied to a realistic biochemical system. A computer 
program in PASCAL, performing the essential parts of this algorithm, is added. 

1. Introduction 

In 1902, Rudolf Wegscheider [1] drew attention to the fact that in some cases, 
mass action rate laws for chemical reactions as obtained from chemical kinetics are not 
consistent with the law of mass action as derived from thermodynamics, if the two 
following assumptions are made: 

(1) the variations of molecule numbers are restricted only by stoichiometric 
conditions; 

(2) the rate constants of all reactions are independent of each other. 

As Lewis [2] proved in 1925 by using the principle of microreversibility, it is the 
second assumption which has to be dropped. Whereas Wegscheider himself considered 
rather special systems, the condition today bearing his name was later phrased for any 
cycle of monomolecular reactions with linear rate laws, in the form 
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1 - I ( k j / k _ j ) =  1, (1.1) 
J 

(for example in [3,4]), where k i and k i are tile rate constants of forward and reverse 
reactions, respectively. 

In a recent paper [5], we generalized condition (1.1) to systems of any 
stoichiometry and endowed with a generalized mass action kinetics (comprising usual 
mass action kinetics as a special case, provided that the reactions are reversible, 
cf. eq. (2.2) in the present paper). The generalized condition reads 

- ) . jk  n 
H q j  = 1, (1.2) 
J 

where qs is the apparent equilibrium constant of reaction Rj (defined as the equilibrium 
constant divided by the mass action ratio of the external species) and ~k are the 
elements of a matrix X whose columns span the null space of the stoichiometric matrix 
C. As for open reaction systems, condition (1.2) is a necessary and sufficient condition 
for the system to be detailed balanced. For tile case of usual mass action kinetics, this 
assertion has been proved in a book by Volpert and Khudyayev ([7], pp. 366-372), 
of  which we were informed only after publication of [5]. In closed systems, to which 
both Wegscheider [1] and Lewis [2] confined their considerations, condition (1.2) is 
always fulfilled. 

To avoid confusion, we here emphasize the difference between the terms "detailed 
balanced state" and "detailed balanced reaction system". A state of a chemical system 
(characterized by a concentration vector) is detailed balanced if and only if all net 
reaction rates are zero, whereas a system is called detailed balanced if and only if all 
stationary states of this system are detailed balanced and at least one such state can 
be attained (cf. [6]). 

Since open reaction systems are generally characterized by permanent exchange 
of matter, they are rather seldom in equilibrium. Yet, detailed balancing may in a 
stretched time scale be relevant to open networks if they are fast subsystems of greater 
networks, thus justifying the rapid-equilibrium approximation to be used [5,8]. 

Furthermore, detailed balancing can be observed in certain subsystems of open 
reaction systems regardless of tile time scale chosen for the analysis. For motivation, 
let us consider a simplified reaction scheme of glycolysis in human red blood cells, 
as depicted in fig. 1. This scheme comprises the adenylate kinase reaction (R6), file 
conversion of glucose-6-phosphate (G6P) into glucose-l-phosphate (G1P), which is 
catalyzed by phosphoglucomutase (Rs) (cf. [91), and the reactions catalyzed by 
phosphofructokinase-2 (Rs) and fructose-2,6-bisphosphatase (R4) (cf. [10]). 

One can easily see that the phosphoglucomutase reaction (R 5) is a dead-end 
branch so that its net reaction rate, v s, always equals zero whenever the considered 
network has attained a steady state. It is obvious that this feature is independent of the 
kinetic parameters of all the system's reactions. 
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Fig. 1. Simplified reaction scheme of glycolysis inclusive of 
some adjacent reactions. Abbreviations: G6P: glucose-6- 
phosphate (XI); F6P: fructose-6-phosphate (X2); TP: pool 
of triose phosphates (X3); GIP: glucose-l-phosphate (X4); 
F2, 6P2: fructose-2,6-bisphosphate (X5); ATP, ADP, and 
AMP have their usual meanings, their concentrations are 
denoted by X 6, X 7 , and Xs, respectively. Glucose (Glc) and 
pyruvate (Pyr) are considered as external metabolites. 

The situation changes when G1P and F6P are treated as external species, i.e. as 
reactants the concentrations of which are kept constant. Let us for a moment 
assume the kinetic functions to be linear, v 1 = kl Glc - k lG6P, v 2 = k2G6P - k_zF6P, 
and v s = k s G 6 P - k  sG1P, and the inequalities (Glcqlqs) /G1P> l and (F6Pqs)/  
(G1P q2) < 1 to hold, where the italic symbols designate the concentrations of the 
corresponding reactants and q~ = k. /k  4 ( j  = 1, 2, 5). In this case, v 5 may be zero as 
well, namely, if 

G l c -  G1P/ (q l  qs) 
k2 = kl (1.3) 

G1P/q5 - F6P/q2 

However, this is, with respect to kinetic constants, a very, special case. 
To distinguish these two types of detailed balancing, in section 2 we define the 

notions "detailed balanced subnetwork" and " strictly detailed balanced subnetwork". 
The attribute "strict" is here used to refer to invariance upon alteration of the values 
of kinetic parameters. 

It follows from the results of  our previous paper [5] that if a reaction system is 
detailed balanced, then it has this property irrespective of its kinetic parameter values, 
since condition (1.2) contains only apparent equilibrium constants. Therefore, it is 
needless to use the notion "strict detailed balancing" for whole systems. For sub- 
systems, however, this specification is of  importance, as the example considered above 
shows. If G1P and F6P are external species and (1.3) is fulfilled, the subnetwork 
composed of reaction R 5 is detailed balanced but not strictly detailed balanced. 

The motivation for dealing with strictly detailed balanced subnetworks is 
inferred from the following considerations. On modeling chemically reacting mixtures, 
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one usually begins with, or even restricts oneself to, the analysis of their stationary 
states (cf. [ 11 - 16]) and to the quasi-stationary states of fast subsystems (cf. [8, 12,13]). 
This analysis is evidently simplified if all reactions which have, in steady state, a zero 
net reaction rate are detected at the very beginning. 

Very frequently, simulation of reaction systems is h~mlpered by incompleteness 
or unsatisfactory accuracy of the known data. Usually, thermodynamic parameters 
can be measured more accurately than kinetic ones (e.g. rate constant.,;). In bio- 
chemical networks, fast reactions can, in vivo, generally be characterized only 
thermodyn,'unically, i.e. in terms of equilibrium constants (cf. [12]). Obviously, this 
problem does not affect the steady-state modeling when reactions with unknown rate 
constants belong to a strictly detailed balanced subnetwork. 

We believe that the new concept of strictly detailed balanced subnetworks will 
be of special relevance for biochemical reaction pathways, since in these systems 
kinetic parameters can vary more rapidly than in inanimate systems as, for instance, 
by regulation of enzyme activities. 

Aiming at a description of regulatory properties of biochemical systems, Kacser 
and Bums [15], and Heinrich and Rapoport [16] developed, independently of each 
other, a formalism which is at present known as metabolic control analysis (see also 
[14]). In this analysis, the extent to which a steady-state flux v? is controlled by a 

1 
particular (enzymatic) reaction R. k is quantitatively expressed by the flux control 
coefficient C~: 

• 31nvS / 31nvk 
; / (1.4) 

C ~ -  31npk 31npe 

Similarly, concentration control coeflicients are defined. In (1.4), v. S is a function of 
J 

system parameters only. In contrast, the rate v k depends on concentrations of internal 
species as well as on parameters. & denotes any kinetic parameter (e.g. the concen- 
tration of the enzyme catalyzing reaction R~) which enters only the rate equation of 
reaction R,t (cf. [14-16]). 

C]  is not, however, defined when ~k and/or v? are zero. In some cases, this 
) 

discontinuity can be removed by defining Cki = 0. This is justified, at least whenever 
reaction R. belongs to a strictly detailed balanced subnetwork, since no reaction can 
exert any control over the (zero) fluxes through such a subnetwork. 

In complex systems, the strictly detailed balanced subnetworks often cannot be 
detected by inspection. An algorithm for this detection, which can also be performed 
by computer, would then be helpful. Such an algorithm, applicable to reaction networks 
with any stoichiometry and involving external species, is given in section 4 of the 
present paper. In section 5, this algorithm is applied to the biochemical system con- 
sidered above. A computer program performing the essential steps of the algorithm is 
listed in the appendix. Section 2 is devoted to terminology. In section 3, we derive 
necessary and sufficient conditions for strict detailed balancing in subnetworks. 
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2. Notations and definitions 

Throughout this paper, we use the symbols O and I, respectively, to denote the 
null matrix and the identity matrix of suitable dimension. Matrices (0X i /0E)  of partial 
derivatives are represented by the symbol Xy, where X~ and Yi are the elements of 
vectors X and Y, respectively. 

The kernel (null-space) of a matrix A is denoted by ker(A). (diag X) stands for 
the diagonal matrix containing the components of vector X as diagonal elements. For 
basic notions (rank, base, kernel, etc.) and relations of linear algebra, the reader is 
referred to [17-201. 

Consider a set R o f  r chemical reactions, IR= {R~, R 2 . . . . .  Rr}, which inter- 
convert n + m reactants with m of these being external species. Under the assumption 
of spatial homogeneity of concentrations, the temporal evolution of the system can be 
described by the O.D.E. system 

dX 
- c v ( x ) ,  (2.1) 

dt  

where X, V, and C denote the vector of concentrations X i of intemal species, the vector 
of net reaction rates v., and the stoichiometric matrix with elements cj, respectively 
(cf. [11]). 

In our previous paper [5], we introduced a generalized mass action kinetics, 

j = 1 . . . . .  r, (2.2) 

which is a convenient generalization of a large multitude of rate laws. The expression 
in square brackets in (2.2), which will be abbreviated to Aj., is proportional to the 
affinity of reaction R.  qi is an apparent equilibrium 'constant. G(X) is, for every j, 
assumed to be positive for any X with positive components. The E(Ai) are strictly 
monotonic increasing functions passing through the origin of coordinates. 

By now, we have realized that expression (2.2) may be simplified to 

vj (X ) = Gj (X ) Aj (X ) (2.3) 

by the definition 

G j (X ) = G~ (X ) F; [A.i (X ) ]IAj (X ). (2.4) 

Since E(Ai) has always the same sign as A i, ~ ( X )  is positive whenever G(X) is 
positive. 

Nevertheless, function (2.2) is a convenient expression, at least for (enzyme-) 
catalyzed reactions inasmuch as E(A~) may express the catalytic power and Gi(X) the 
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inhibitory, activatory, competitive, and other modifying properties. In the present paper, 
we employ expression (2.3) rather than (2.2) in order to simplify the mathematical 
presentation. 

For the purpose of our paper, it is appropriate to define the term "reaction 
network" as a reaction system which is specified thermodynamically and whose kinetic 
properties (i.e. the functions G(X) and the values of kinetic parameters) are assumed 
to be specified in each concrete situation, but not necessarily known. Moreover, the 
values of kinetic parameters are allowed to change with time. This can be concisely 
stated as follows. 

DEFINITION 1 

A chemical reaction network is a set of reaction stoichiometries X. = {R 1 . . . . .  R }  
endowed with generalized mass action kinetics with specified apparent equilibrium 
constants qr' J = 1 . . . . . .  r. 

Remark 

This definition is a slightly modified variant of the terminology of  Clarke, who 
defines a chemical system to be a set of reaction stoichiometries endowed with rate 
laws with specified parameter values, and a chemical network to be a set of  chemical 
systems, one system for each value of a parameter vector which lies in a specified 
domain of parameter space ([11], p. 8). 

DEFINITION 2 

A chemical subnew'ork of a given reaction network with reaction set X.is a 
subset of  X., x}i~c R,  where each reaction R~ from X(i) has the same apparent 
equilibrium constant as it has in the whole network. 

DEFINITION 3 

A chemical subnetwork (with ~ i )  being its subset of reactions) will be called 
detailed balanced if and only if the net reaction rates vi for all j with R / e  ~ i )  
vanish in every, asymptotically stable steady state of the whole network. 

Remark 

The notion of  asymptotic stability will, in the present paper, be interpreted in 
the sense that rank(C) eigenvalues of the Jacobian matrix of  (2.1) have negative real 
parts in the considered steady states. In the case rank(C)< n, we need not take all n 
eigenvalues into consideration because n - rank(C) of them always vanish due to 
conservation relations (cf. [11,14]). 
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DEFINITION 4 

A subnetwork of a given reaction network will be called strictly detailed 
balanced if and only if it is detailed balanced for any parameter value set, the apparent 
equilibrium constants ?/j, j = 1 . . . . .  r, being fixed and condition G~(X) > 0 being 
fulfilled for any j. 

Remark 

For the calculations in the following section, it is of importance that the term 
"parameter" used in definition 4 applies to any quantity (apart from the stoichiometric 
coefficients and the apparent equilibrium constants) influencing the reaction rates of 
this subnetwork, even if this quantity does not enter the rate law. For example, many 
rate laws, for the sake of simplicity, are linear functions. In these cases, the complete 
nonlinear rate law has to be considered in definition 4. Moreover, it is of no relevance 
whether some considered parameter can actually be changed in the real system. 

3. A generalized Wegscheider  condition for subnetworks  

We now investigate the question under which conditions a chemical subnetwork 
is strictly detailed balanced. Let 

?'= rank(C). (3.1) 

Since in the case 7 = r the whole network attains a globally stable equilibrium (cf. [5]), 
we confine the analysis to the case y< r. Let ;t be an r × (r - y) matrix whose columns 
are a base of ker(C): 

C;~ = O. (3.2) 

Matrix ~,, which will be called a null-space matrix, is not uniquely determined. It can 
be transformed by the following two operations to give another matrix ~ whose 
columns span the null-space of C as well. 

(O1) Multiplication by a non-singular (r - y) x (r - y) matrix Q from the right: 

= AQ. (3.3) 

(02)  Permutation of rows, i.e. multiplication by a permutation matrix P from the left: 

]k = PA.  (3.4) 

Operation (02)  entails a renumbering of columns of C. 
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The algorithm for detecting all reactions belonging to a strictly detailed balanced 
subnetwork will be based on the following: 

THEOREM 

A subnetwork of  a given reaction network is strictly detailed balanced if and 
only if the following two conditions are fulfilled: 

(C1) The null-space matrix ,;I. can be transformed by operations (O1) and (02) into 
a generalized diagonal matrix 

', ° 1 2 = 2(2) , (3.5) 

(c2) 

where 2 (1) and X(2) are a g × l matrix and an ( r  - g) × (r - y -  l) matrix, 
respectively, with the rows of  the submatrix (.a. °) O)  corresponding to those 
columns in C which belong to the considered subnetwork. In (3.5), the 
cases l = 0 and l = r - y are admitted as well, that is, the number of columns 
of 2 (I) or of 2 (2) may be zero. 

Either the number of  columns of 2(1) l, is zero, or the equation 

_(1) /t(1)rln q = 0 (3.6) 

is fulfilled, where ~o) is, after the renumbering of reactions according to 
operation (02), that subvector oft]  which conesponds to ~o) i.e. 

41 | ) = g. (3.7a,b) 
q= 42 ; '  

dim 

Proof 

To prove the sufficiency, we assume conditions (C1) and (C2) to hold true. In 
accordance with (3.7), we partition C, V, and 6; (X) = (GI(X) . . . . .  Gr(X)) T as 

C =  C (1) C (2) V=k.V(2) j ,  G ( X ) =  ~ ( 2 ) ) "  (3.8a,b,c)  

Equations (3.2), (3.5), and (3.8a) imply 

C(1))I °) = O. (3.9) 

From (3.9) and the steady-state equation C°)V (1) = 0, it follows that V (1) can be written 
as 
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V (1) = 3.(:)Z, (3.10) 

where Z is some /-vector. 
Using (2.3), we can write the function V(:)(X) as 

V(i)(X ) = (diag -G(1)(X ))(ln ~(:)-C°)rln X ). (3.11) 

Multiplication of eq. (3.11) by V(:)r(diag 1/G -0)) from the left yields 

V (1)T(diag 1/G-(l)) V (1)= V (1)Tln I~ (1)- V(1)Tc(1)TlnX. (3.12) 

This equation can, by virtue of (3.6), (3.9), and (3.10), be simplified to 

v( l )r(diag 1/G -(1)) V (1)= 0. (3.13) 

Since all Gj are positive, the quadratic form on the 1.h.s. of (3.13) is positive definite. 
Consequently, eq. (3.13) holds if and only if all components of V (:~ vanish, which 
completes the proof of the "if" part of the theorem. 

In order to prove the necessity, we consider the subnetwork corresponding to V (:~ 
to be strictly detailed balanced. Then we have 

V (:) = 0, (3.14) 

which implies, due to (2.3) and G.(X) > 0 for all j, 

In ~ O ) - C ( : ) T l n X  = 0. (3.15) 

According to definition 4 in section 2, eq. (3.15) has to hold regardless of the values 
of kinetic parameters (which will be gathered in a vector p). Thus, we have to invoke 
that the first differential of the 1.h.s. in (3.15) (denoted by dA) with any increment dp 
equals the null vector: 

( -(1)'r C(: ) dA(p,  d p ) = d  lnq  - )'rInX =0 .  (3.16) 

This equation leads to 

C(:)T{diagl/X) dX = 0. (3.17) 
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We now have to take into consideration that in the case of  7' < n, there exists n - 7' 
invariants involving reactant concentrations, 

BX( t )  = K ,  (3.18) 

where K denotes a vector of  n - 7' constants and B is an (n - 7') x n matrix defined 
by 

B C  = 0 (3.19) 

(cf. [13]). Let the rows of  C be rearranged so that the upper y r o w s  (which form the 
matrix C )  are linearly independent: 

C = ( 6 ~ ) .  (3 .20)  

We partition C °~ and C ~2~ in accordance with (3.20) as 

C (1~= ~(1~ C (2~= , ~ 6 ( 2 )  ) . (3 .21)  

This rearrangement given, B may be chosen as 

B = (B I ) ,  (3 .22)  

with B being an (n - 7') × ymatr ix ,  since the rows of: ~' must be linear combinations 
of  the rows of  C,  that is, 

= - B  C.  (3 .23)  

Partitioning X corresponding to (3.20) as 

X = , dim (1") = 7', (3.24a,b) 

we may write J~ in terms of  X as follows: 

.~ = K - B  X .  (3 .25)  

Using (3.23), (3.24a), and (3.25), we may rewrite (3.17) as 
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~-(1 )T M- dX- = O, (3.26) 

with 

M = (  l ) T ( d i a g l l ( J ~ -  1. (3.27) 

The increments 
sisting in steady 
the null vector: 

B 

dp and dX are not independent since the system is to continue sub- 
state. Therefore, the total differential of the r.h.s, in (2.1) must equal 

C dV LX, dX (p,  dp), p ,  dp]  : O. (3.28) 

Using algebraic rules for differentials (cf. [19], ch. 5), we obtain 

C V-~ dX (p,  dp ) + C Vp dp = O. (3.29) 

Since the rows of C are linearly dependent on the rows of C (cf. decomposition 
(3.20)), eq. (3.29) is equivalent to 

C-Vx dY(p, dp)+ -Vp @ = O, (3.30) 

where the chain rule of differentiation has been used. The matrix 

J = C Vx x 2 -  (3.31) 

can be considered as a reduced Jacobian matrix of the O.D.E. system (2.1), a Jacobian 
which has been "rid" of the vanishing eigenvalues. It can be shown that J is non- 
singular and, thus, invertible whenever "?'eigenvalues of the complete Jacobian CV x of 
the O.D.E. system (2.1) have negative real parts [11,14]. Since we used this very 
assumption above (cf. the remark to definition 3), we may transform eq. (3.30) to 

dX-=- j -1C-Vp dp.  (3.32) 

Substituting eq. (3.32) into (3.26), we obtain 

C(I)'rMj-1C-Vp = O, (3.33) 

since (3.32) is to hold for arbitrary parameter changes dp being sufficiently small so 
as not to cause the steady state to become unstable. The matrix V can be obtained from 
(2.3): 
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Vp = [diag (ln t ] - C  Tln X ) ~ G ) .  (3.34) 

In (3.34), the fact that the pt are kinetic parameter_s rather than equilibrium constants 
and that they, accordingly, enter the functions G(X) rather than the affinities Ai(X) 
has been taken into account. For this reason and due to eq. (3.15), we have 

Vff~)= O, (3.35) 

which, upon substitution into (3.33), gives 

C(1 )v M j - I  ~-(2) V¢2) = 0. (3.36) 

We now consider such a family p of external parameters which is rich enough for the 
matrix V (2~ to have full rank r - g. Such a set p can always be chosen, since arbitrary 

P 
parameter changes are allowed (see also the remark to definition 4 and considerations 
in [14], sect. 3B). We can then write 

rank (~(21Vp(2~) = rank (~(21). (3.37) 

Equation (3.36) implies that the column vectors of the matrix M J  -~ C(2~V (2~ have to 
P 

be contained in the kernel o f C  °~v, whence we can conclude that 

rank ( m  J-1-C-(2)Vff2~) < dim [ker (C ~(1 ~)1 = 7 -  rank (~(11). (3.38) 

Since M has a special symmetric structure (cf. eq. (3.27)), it is, due to a theorem of 
matrix algebra (theorem 5 in [20], p. 129), positive definite and, hence, non-singular. 
Therefore, also M J  q is non-singular. Consequently, inequality (3.38) implies 

rank (~-(2) Vff2) ) < 7 -  rank (C (1 ~). (3.39) 

Equations (3.37) and (3.39) give 

7> rank (~-(1~) + rank (~-(2~). (3.40) 

Since the rows of C o) and ~2)  are linearly dependent on the rows of ~o~ and ~(2), 
respectively, inequality (3.40) is equivalent to 

7_> rank (C (~)) + rank (C (2)). (3.41) 

Due to the decomposition of C given by (3.8a), (3.41) leads to 
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y =  rank (C (1)) + rank (C (2)). (3.42) 

From (3.42), we may derive 

dim[ker (C (1))] + dim[ker (C (2))] = r -  y. (3.43) 

Since r -  7 is the dimension of ker(C), (3.8a) and (3.43) give 

ker(C)  = ker(C (1)) ® ker(C (2)), (3.44) 

where ® refers to the direct sum. 
In the same way as we defined matrix ~ as the null-space matrix associated with 

the stoichiometric matrix C (cL eq. (3.2)), we now define, for the submatrices C °) and 
C ~2), the null-space matrices Z(1) and Z (2), respectively. By virtue of this definition, we 
can write 

( Z  (1) O ) (C(1) C(2)) O ~(2) = O .  (3.45) 

Equation (3.44) implies that the generalized diagonal matrix on the l.h.s, of (3.45) has 
r - y columns. All of these columns are linearly independent, since so are the columns 
of Z (~) and A. (2). Consequently, the generalized diagonal matrix on the 1.h.s. of (3.45) 
is an admissible null-space matrix A., so that condition (C1) follows from the property 
of the subnetwork corresponding to V °) to be strictly detailed balanced. If l > 0, 
condition (C2) is, due to (3.45), easily obtained by multiplying eq. (3.15) by ~.(a)'r from 
the left. If l = 0, that is, if (3.5) simplifies to 

C ° ) X= Z(2) , (3.46) 

all reactions of the considered subnetwork are, in any steady state, detailed balanced 
since the corresponding rows in X contain zeroes only. This completes the proof of the 
theorem. 

If the whole reaction network is to be examined as to whether or not it is strictly 
detailed balanced, (3.5) "degenerates" to 

= .aol, (3.47) 

so that condition (C2) coincides with the generalized Wegscheider condition as derived 
in [5], as should be expected. Accordingly, conditions (C1) and (C2) can be regarded 
as a generalized Wegscheider condition for subnetworks. 
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4. The algorithm 

Using the results of  the previous section, the following algorithm for detecting 
the largest detailed balanced subnetwork can be derived. The basic idea is to find a 
canonical form of matrix ;t with respect to the group of transformations (O 1) and (O2), 
which is a subgroup of the set of all equivalence transformations of r × r matrices (cf. 
[18], ch. 17). 

We first give the algorithm and, thereafter, its justification. 

(1) Transform matrix C by the Gaussian elimination method (given, for example, 
in [17], ch. 2) to an echelon form, C', 

C , =  

"c'1  d2 

0 . 

0 0 

0 0 

0 0 

• / 

C ~ ,  c y ,  ),+ 1 

C l r  

! 

• . . C7, r 

0 0 
• 

0 0 

(4.1) 

Calculate a set of  basic solutions of the homogeneous equation system 

C 'Z .k = O (4.2) 

as usual in the Gaussian elimination method, i.e. by putting 

Zik = fii- ~,,k, i = )'+ 1 . . . .  , r;, k = 1 . . . . .  r -  ), (4.3) 

and by calculating the other 2.~ in a recursive way, 

&ik = - c [d ,+ t -  ~, ci'mYtmk 'ii. (4.4) 
r n = i +  1 

(2) All reactions which correspond to rows in Z that contain only zeroes belong to 
a strictly detailed balanced subnetwork. For the further analysis, cancel these 
rows (say, f in number) in 2.. Let the resulting matrix be denoted by A. 

(3) Rearrange the rows and columns of A in such a way that it forms a generalized 
diagonal matrix 
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'A(1) I 1 I A(2) I O 
A =  I-------4. 

O r I 
, I A (/-0 

(4.5) 

where none of the submatrices A (~) represents a generalized diagonal matrix in 
any rearrangement of rows and columns of A (k) whatsoever. Denote the numbers 
of rows and columns of A (k) by r k and l k, respectively. Then we have 

,u ,u 

~,  rk = r - - f ,  ~,  lk = r -  % (4.6a,b) 
k = l  k = l  

(4) Decompose the vector In q" according to 

In 4T=  (In t~ (l~'r . . . . .  In 4(~)v), (4.7) 

with In ~(k) having r k components. Check for each k = 1 . . . . .  /z whether 

_(k) 
A(*)TIn q = O (4.8) 

is fulfilled. If it is for some k, the corresponding subnetwork is a strictly detailed 
balanced subnetwork. All of these subnetworks together may be looked upon as 
one compound network, which obviously also fulfills conditions (C1) and (C2). 
This subnetwork, together with the detailed balanced reactions detected in 
step (2), forms the maximum strictly detailed balanced subnetwork. 

Jus'tification o f  the algorithm 

It follows from the theory underlying the Gaussian elimination method that the 
equation system (4.2) has the same m~mifolds of solutions as the equation system 
C&k = 0. Therefore, the solutions 2.k as calculated in step (1) form an admissible null- 
space matrix, which can be partitioned as 

The detection of a strictly detailed balanced subnetwork in step (2) is a straightforward 
application of conditions (C1) and (C2) for the case l = 0. 

In section 3, we considered a bipartite decomposition of the whole network and, 
accordingly, a decomposition of .~ into two diagonal blocks. However, for some systems, 
A. can be partitioned into more than two blocks. Since we do not know from the 
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beginning which of  these submatrices fulfills eq. (3.6), we cannot immediately decide 
which bipartite decomposition of ;t, is to be used. Therefore, in step (3) we determine 
a representation of /~  with the maximum number of diagonal blocks possible, i.e. a 
canonical form as alluded to at the beginning of section 4. According to (4.9), A can 
be partitioned as 

To justify step (3), we have to show that A as given by (4.10) can actually be 
rearranged so that it fulfills eq. (4.5), with/.t being the maximum possible number of 
diagonal blocks. To this end, we cancel all columns in C which correspond to zero rows 
in X. Let the resulting matrix be denoted by D. We then have 

D A  = O. (4.11) 

Let A ~ be the representation of  A as constructed by the algorithm, i.e. as given by 
(4.10), and let D ~ be that representation of  D which corresponds, in its arrangement 
of  columns, to A I. Let A n denote a matrix that fulfills eq. (4.5), with # having the 
property mentioned above. However, AII need not necessarily result from A r by inter- 
change of  rows and columns. Let D H be that form of D which corresponds, in its 
arrangement of  columns, to An. We partition D n in accordance with (4.5): 

D I I =  ( D 0 )  D(2) " ' "  D(u)) .  (4.12) 

D Ck~ then has r k columns. From eqs. (4.5), (4.11), and (4.12), we obtain 

D(k)A ( k ) = O ,  k =  1 . . . . .  /.t. (4.13) 

Since A I has the special structure given by (4.10) and .A. is a ( y - f )  x ( r -  y) matrix, 
D ~ can be partitioned as 

with D~ x being an n x ( y - f )  matrix of full rank. 

In each submatrix D (k~, there are r k - l k columns which are also columns of  D].  
If there were more than r k - l k such columns, which are linearly independent of  each 
other since so are the columns of  D],  eq. (4.13) could not be fulfilled with A (k~ having 
rank l k. If there were less than r k - l~ such columns, the equation 

r - f ,  
k=l 
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which follows, from (4.6a,b), would imply that another submatrix D (j) would contain 
more than r -  L columns which coincide with columns of D]. From these considera- 
tions, it also follows that any D (k) has rank r, - l k. 

Now, we interchange the columns of Dn'~so that all the 7 - f  linearly independent 
columns defined above enter each submatrix D ~k) on the left-hand side of this sub- 
matrix. Then, each D (k) can be partitioned as 

with D(k) being an n x (r k - l~) matrix with rank r~ - l~. Since the columns of D~ k) are 
linearly dependent on file columns of D~ ~, there must exist matrices T (k~ (k = 1 . . . . .  #) 
with 

O k)= (4.16) 

From (4.16), we can conclude that the r k x l k matrix 

AIII(k' = (-T(k)') (4.17) 
k, l ) 

is an admissible matrix A (k~ since it fulfills eq. (4.13). It remains to show that A H~, 
which is defined by (4.5) with A (k} given by (4.17), can be obtained from A I by 
permuting rows and columns. To this end, we sort the rows of A IH so that all rows 
which correspond to a column of a submatfix D~ k~, i.e. which represent a row of an 
identity matrix, get to the bottom of A: 

A~ v AIV'~ 

The matrices A I and A TM must be transformable into each other by the operations (O1) 
and (02): 

AIV= PAIQ.  (4.19) 

After the permutation leading to (4.18), all columns of submatrices D2(k~ form an 
n x (r - 7) matrix D~ v on the fight-hand side of D: 

D I V = ( D ~  v D21v 1. (4.20) 

Since all columns of any submatrix --1/9(k) coincide with columns of D~, the submatrices 
D~ v and D~ contain the same columns, yet possibly in a different sequence. In the 
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transformation from A 1 to A TM, only the upper 7 - f  rows in A I a r e  therefore allowed 
to be interchanged among each other, and so are the lower r - 7 rows. Thus, P 
subdivides into two permutation matrices: 

(7; °1 P =  P2 " 

Inserting (4.10), (4.18), and (4.21) into (4.19), we obtain 

I = / ' 2  Q" (4.22) 

Since permutation matrices are orthogomd, (4.22) implies that Q = Pf.  Accordingly, 
Q is a permutation matrix as well, which completes the justification of step (3). 

Step (4) results in a straightlb~vard way from condition (C2). 

5. An example  

We now analyze the biochemical network depicted in fig. 1 by the developed 
algorithm. The stoichiometric matrix of this network reads 

C = 

c[ 

1 - 1  0 0 - 1  

0 1 - 1  1 0 

0 0 2 0 0 
0 0 0 0 
0 0 0 - 1  

0 0 
0 0 

0 0 
1 0 0 

0 0 0 

-1  0 -1  0 0 - 1  - 1  
1 0 1 0 0 2 1 

0 0 0 0 0 - 1  0 

0 0 
- 1  0 

0 - 1  
0 0 
1 0 

- 1  2 
1 - 2  

0 0 

C1 C2 

C , 

(5 .1 )  

and has rank 7. A can be chosen to be 

= 
0 0 0 1 0 0 -1  1 O~ T. 

) 1 1 1 0 0 0 1 0 1 
2 2 2 

(5 .2 )  



S. Schuster, R. Schuster, Strictly detailed balanced subnetworks 35 

It cannot be rearranged to give a generalized diagonal matrix. Nevertheless, it contains 
two null vector rows. Accordingly, the corresponding reaction rates v 5 and v 6 are 
always zero in steady state. 

When the concentrations of ATP, ADP, and A ~  are considered to be virtually 
independent of the network response, i.e. when these metabolites are external ones 
(denoted by P~, P2' and P3' respectively), the lower three rows of C can be cancelled 
and we obtain the stiochiometric matrix C*. The corresponding matrix f f  has rank 4 
and can be chosen to be 

0 0 0 0 0 1 0 0 0"~ T ' J  
0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 1 0 
I 1 1 0 0 0 0 0 1 
2 2 2 

(5.3) 

Since the fifth row of f f  contains zeroes only, reaction 5 again constitutes a strictly 
detailed balanced subnetwork. Cancelling this row, we obtain a matrix A* which can 
be rearranged to give a generalized diagonal matrix: 

A* = 

1 o o o o o o o01T 
0 1 0 0 0 0 0 

0 0 1 1 0 0 0 ? J  " 1  1 1 
0 0 0 0 2 2 2 

(5.4) 

The corresponding vector V reads 

V = (736,7,37,7.)4, v 8, 731,7-)2,7-/3,739 )T,. (5.5) 

The diagonal blocks in A* correspond to the following five subnetworks (denoted 
by the reaction sets): {R6}, {Rv}, {R 4, R8}, {R 1, R 2, e y  R9} • Reaction R 7 is strictly 
detailed balanced whenever the corresponding row in A fulfills eq. (3.6). This 
equation takes the form In (-/7 = 0 or 

P2/P1 = q7, (5.6) 

which is consistent with usual equilibrium conditions for single reactions. 
Similarly, reaction 6 is detailed balanced whenever 

p21(p1 P3 ) = q6. (5.7) 

Reaction 4 can be detailed balanced only if reaction 8 is, and vice versa. The equili- 
brium condition reads 
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P2/P~ = q4qs .  (5.8) 

If this condition is not :fulfilled, the subnetwork in question is a so-called futile cycle 
(cf. [10]) since ATP is perpetually degraded with the only effect of heat production. 

The remaining subnetwork {R~, R2, R 3, R9} is, under physiological conditions, 
not detailed balanced. Yet it can be, theoretically, if 

~/41 02613 q9 = 1. (5.9) 

6. Concluding remarks  

In the present paper, we have introduced the concept of strict detailed balancing 
and derived necessary and sufficient conditions for subnetworks of open chemical 
reaction networks to be strictly detailed balanced. These conditions can be briefly 
stated as follows. The net fluxes of all reactions which correspond to those rows in ,~ 
(the matrix whose columns span the kernel of the stoichiometric matrix) that contain 
only zeroes are always zero. The set of remaining reactions can be divided into 
subnetworks according to the decomposition of matrix A given by (4.5). Any one of 
these subnetworks is strictly detailed balanced if and only if condition (4.8) is fulfilled. 
This condition can be considered as a generalized Wegscheider condition for the 
respective subnetwork. 

An algorithm lor detecting the maximum strictly detailed balanced subnetwork, 
being the union of all strictly detailed balanced subnetworks, has been developed. In 
practice, this subnetwork often can be determined rather quickly by inspection of the 
reaction scheme. However, a computer implementation of the algorithm presented is 
faster and more reliable than the "graphic" method, especi~dly for large reaction net- 
works. 

It should be emphasized that our method is applicable only to systems of reversible 
reactions, i.e. of reactions with finite, non-zero equitibrium constants. As has been 
stressed in [5], the generalized mass action kinetics defined in (2.2) comprises, in the 
case of reversible reactions, the "general mass action kinetics" defined by Horn and 
Jackson [6]. The latter rate law, however, has the advantage that it describes 
irreversible reactions as well. 

In the paper cited above [6], which in the early seventies pioneered a series of 
papers dealing with properties of steady states of chemically reacting systems (see, e.g. 
[21,22]), Horn and Jackson also commented on detailed balance, but without deriving 
conditions for chemical systems to have this property. Rather, their interest centers 
upon complex balancing, which means that the net formation rate of each complex (i.e. 
each group of molecules appearing betbre or after the reaction arrows) is zero. Since 
detailed balancing implies complex balancing, the latter notion can be considered a 
natural generalization of the former but, as Horn and Jackson themselves mentioned 
([6], ch. 7), the concept of complex balance has the essential drawback of not being 
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susceptible to macroscopic observation, because the "concentration" of complexes 
cannot be measured. Nevertheless, this concept was helpful in the derivation of  neces- 
sap/and sufficient conditions for steady states to be unique and globally asymptotically 
stable [22]. In the present paper, asymptotic stability of the considered steady states 
was a priori presupposed. 

The approach presented seems to be of considerable assistance for the modeling 
of chemical systems in the case of incomplete knowledge of kinetic parameters, for 
it allows to predict for any given reaction system which of the reactions are always 
in equilibrium. Therefore, one is able to select some flux control coefficients which 
are always zero, namely, all C] with R i being a reaction belonging to a strictly detailed 
balanced subnetwork. Moreover, we suggest to define, likewise, Ck = 0 with R having 

,/ 1 
the property mentioned above, since it is intuitively clear that such a reaction cannot 
exert any control either. 

It may be supposed that the decomposition of networks as given in (4.5) has 
some implications for the control structure even if condition (4.8) is not fulfilled, in 
that reactions corresponding to block A (y) do not control, under some additional 
conditions, any reaction of a subnetwork corresponding to another block A (~). This 
point is worth investigating in the future. 
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Appendix 

The following computer program, written in PASCAL, performs the transfor- 
mation of matrix C into echelon form, the calculation of matrix ,a, using the echelon 
matrix C' and the rearrangement of rows and columns of J. so as to obtain a generalized 
diagonal matrix. In the first part of this rearrangement, all zero rows of ~ are transferred 
to the bottom of .a,. 

It is tacitly assumed that the rank of the stoichiometric matrix is less than the 
number of reactions. For the sake of brevity, the declaration of variables, the input and 
output of data, as well as the test whether or not condition (3.6) is fulfilled are omitted 
in the program. The meaning of the variables is as follows. 

Input parameters: 

n, number of reactants; r, number of reactions; c, stoichiometric matrix C. 

Output parameters: 

rank, rank of matrix C; 1, matrix X; f, number of zero rows of  X; p, permutation vector 
which indicates the rearrangement of columns of C' (p[i] is the column index of  
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column i in the original matrix C); a, vector of  which the ith component  indicates the 
index of  the bottom row of  the submatrix A(i); b, vector of  which the ith component  
indicates the index of  the last column of  A (;). 

program balance; 
procedure re(s, t: integer) (* row exchange *); 
begin for m := 1 to max do 

if matrix = "ca" then begin 
z := ca[s, m}; ca[s, m] := ca[t, m}; ca[t, m} := z; 

end else begin 
z := l[s, m]; l[s, m] := l[t, m]; lit, m} := z; end; 

end; 
procedure ce(s, t: integer) (* column exchange *); 
begin for m := 1 to max do 

if matrix = "ca" then begin 
z := ca[m, s}; ca[m, s] := cairn, t}; cairn, t] := z; 

end else begin 
z : = l [ m , s ] ;  l [ m , s ] : = l [ m , t ] ;  l [ m , t ] : = z ;  end; 

end; 
begin 
(* Transformation of  matrix C into echelon form *) 

for j := 1 to r do p[j] :=j ;  
matrix := "ca'; i := 1; k := n; 
while i <= k do begin 

if call, i] = 0 then begin j := i + 1; 
while (call, j] = O) and (j <= r) do j := j  + 1; 
if j = r + 1 then begin 

if i < k then begin max := r; re(i, k); 
end; k : = k -  1; 

end else begin 
max :=n ;  ce(i, j);  p[O] := p[j]; p[j] := p[i]; 
p[i] := p[O]; end; 

end else begin for m := i + 1 to k do 
for j := i to r do begin 

if ca[m, i] < > 0 then 
cb[m, j] := ca[m, j l*ca[i ,  i]/ca[m, i] - ca[i,j]  

else cb[m, j] := calm, jl; end; 
f o r m : = i  + 1 to k d o  

for j := i to r do cairn, j] := cb[m, j]; 
i : = i  + 1; end; 

end; rank := k; 
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(* Calculation of  lambda *) 
f o r m : = r a n k +  1 to r d o  

for h := 1 to r-rank do begin 
if  m = h + rank then l[m, h] := 1 
else l[m, h] := O; end; 

for j := 1 to r-rank do 
for i := rank downto 1 do begin z := O; 

f o r m : = i  + 1 to rank do 
z : = z  + ca[ i ,m]* l [m, j ] ;  

l[i,j] := (-ca[i,  rank + j] - z)]ca[i, i]; end; 
(* Rearrangement of  lambda *) 

matrix := T ;  i := 1; k :=  r; 
while i < k do begin h := 1; 

while (h <= r-rank) and (l[i, hi = 0) do h := h + 1; 
if  h = r-rank + 1 then begin 

if  i < k then begin max := r-rank; re(i, k); 
p[0] := p[i]; p[i] := p[k]; p[k] := p[0]; 

end; k : = k -  1; 
end e l s e i : = i  + 1; end; 

f : = r - k ;  q : = 0 ;  
for m := 0 to r do begin a i m ] : = 0 ;  b [ m ] : = 0 ;  end; 
while a[q] < r -  f do begin 

i : =  a[q] + 1; j := b[q] + 1; exchange := true; 
repeat 

exchange := false; h := r-rank; 
while j <= h do begin m := a[q] + 1; 

while (m <= i) and (l[m,j]  = 0) do m := m + 1; 
if  m = i + 1 then begin m := a[q] + 1; 

while (m <= i) and (l[m, hi = 0) do m := m + 1; 
if  m < i + 1 then begin 

if j < h then begin 
max := r - f; ce(j, h); exchange := true; end; 

e n d ; h : = h -  1; 
end e l s e j : = j  + 1; end; 

j : = j -  1; k : = r -  f; 
while i <= k do begin m := b[q] + 1; 

while (m <= j) and (l[ i ,m] = 0) do m : = m  + 1; 
if  m = j + 1 then begin m := b[q] + 1; 

while (m <= j) and (l[k, m] = 0) do m := m + 1; 
if  m < j + 1 then begin 

if i < k then begin 
max := r-rank; re(i, k); exchange := true; 
p[0] := pill; p[i] := p[k]; p[k] := p[0]; end; 
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end. 

end; k : = k -  1; 
end else i := i + 1; 

end; i : = i -  1; 
until not exchange; 
q := q + 1; a[ql := i; b[q] := j ;  end; 
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